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Some homogeneous elastic materials are capable of sustaining finite

equilibrium deformations with discontinuous strains. For materials of

this kind, the energetics of isothermal, quasi-static motions may

differ from those conventionally associated with elastic behavior.

When equilibrium states involving strain jumps occur during such

motions, the rate of increase of stored energy in a portion of the

body may no longer coincide with the rate of work of the external

forces present. In general, energy balance now includes an additional

effect due to the presence of moving strain discontinuities. As a

consequence, the macroscopic response of the body may be dissipative.

This fact makes it possible to model certain types of inelastic

behavior in solids with the help of such "unstable" elastic materials;

see, for example, Abeyaratne and Knowles (1987a,b,c).

The purpose of the present note is to illustrate behavior of this

kind with the help of an especially simple example involving the

extensional deformations of a bar treated as a one-dimensional

continuum. The bar is composed of an unstable elastic material of the

type considered by Ericksen (1975). We show that the force-elongation

relation (or "macroscopic response") of the bar during a quasi-static

motion may be viscoelastic when a moving strain jump is present, even

though the underlying constitutive law is elastic in the sense that,

at each particle, the present stress is determined by the present

strain.

%Consider an elastic bar which, in the reference configuration,

occupies the interval [O,L] of the x-axis and has constant

0cross-sectional area A. In a deformation, the particle at x is carried

to y = x + u(x), where u is the displacement. We assume that u is

continuous on (O,L], and that u'(x) exists and is continuous for 0 : x

5 s and s : x : L, but u'(s+) and u'(s-) may differ; here 0 < s < L.

If x $ s, the strain at x is c(x) u'(x). It is required that r(x) )
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-1 for x # s, so that the mapping x 4 y is invertible. We take the

left end of the bar to be fixed, so that u(O) = 0.

Suppose that the material is elastic with strain energy per unit

reference volume W(c). The nominal stress response function is then

o(z) = W'(c), (j)

so that the nominal stress in the bar at particle x is c(x) = a(r(x)).

We shall be concerned with the special "trilinear" stress response

function given by

r uE , - EM

ey(() ( +M- 2z) CM r 1 E , (2)m - c M M

0 m - <E "

The graph of ,(c) is shown in Figure i, where the meanings of the

constants p, EM, Em and to = VM + Em are made clear. One may think of

the material as exhibiting three phases: the first phase is represented

by the rising branch of the stress-strain curve through the origin, the

third phase corresponds to the final rising branch, and the declining

portion of the curve represents an unstable intervening second phase.

In the present case, the first and third phases are both associated

with the same modulus AA.

In the absence of body force, the bar will be in equilibrium if the

nominal stress o(x) satisfies

0(x) = o - constant , 0 1 x 1 L (3)

A deformation with a strain discontinuity of the kind described

above will correspond to an equilibrium state if it is of the form

If • . -, , ". -.WI"N 11 No
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u(x) f (4)

2 x + (E= 1. 2)s , s x L

where the strains r and v are constant and such that

o(C ) = (c ) = o . (5)

We shall be concerned here only with those deformations of the form (4)

in which

-EM  1 E£M E m Ei 1 EM + to , (6)

so that only phases one and three are represented. For an equilibrium

state of this kind, the total energy stored in the bar is

E = AW( I )s + AW( 2)(L - s) . (7)

Now suppose that the bar is in a quasi-static motion during which,

at each instant t, the displacement u(x,t) is of the form (4), with s

= s(t), ti = E (t) and r2 = t2(t). The restrictions (5) and (6) are to

hold for all t, with a = a(t). Assume that s(t), £1 (t) and r (t) are

continuous and piecewise continuously differentiable in t. During

such a motion, the energy E(t) is given by (7) with ti, E , and s now

functions of time. A direct calculation gives

t(t) =  F(t)S(t) + A[-f(t)];(t), (8)

where F(t) = a(t)A is the force,

6(t) - u(L,t) = z,(t)s(t) + ga(t)(L - s(t)) (9)

is the elongation of the bar at time t, and f(t) is given by
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flt) =W( 2 (t)) - W(r (t)) - Y(t)(E (t) - L (t)). (10)
31 2 1

The first term on the right in (8) is the rate of work of the force

acting on the end x = L of the bar. The second term may be interpreted

as the rate of work done by a fictitious "traction" f(t) in moving the

strain discontinuity at x = s(t). For the stress-strain relation (2),

one finds using (1),(6) and (10) that

f(t) = - 0o(t). (11)

If the motion takes place isothermally, the second law of

8.'" thermodynamics requires that - FJ be nonnegative; thus the motion

must be such that

f(t);(t) > 0. (12)

Because of (5) and (6), specifying the history of the stress acting

. on the bar determines t (t) and t (t), but leaves undetermined the
1 2

location s(t) of the strain jump, and therefore the elongation history

6(t) of (9) as well.

In formulas (7) and (9), one may regard s as an "Internal variable"

akin to those arising in microstructural theories of plasticity; see,

for example Rice (1971) . This suggests that, by analogy with such

theories, the constitutive description of the material should be

augmented by relating the fictitious traction f(t) to the velocity of

the moving discontinuity s(t). One form that such a "kinetic relation"

might take is

;(t) V(f(t'4 (13)

where V Is a function determined by the material. Using (11), one

infers from (13) that

V.
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Note from (12) that every admissible V must be such that V(f)f . 0.

Let 7(t) = 6(t)/L be the relative elongation of the bar. The

relation between t and F - the macroscopic response of the bar - may

now be determined as follows. Using (2) and (6) in (9) yields

6(t) = C 0 [L-s(t)] + a(t)L/p , (15)

from which, with the help of (14), one finds the nonlinear

viscoelastic relation

* +(t) = N(t)/,A - r0 V(-r 0 F(t)/A)/L . (16)

If in particular the kinetic response function V is specified through

V(f) = f/v , where v is a positive constant, (13) provides a linearly

"viscous" kinetic relation between f and i. The macroscopic response

relation (16) specializes to

*(t) = V(t)/pA + E2F(t)/vLA (17)

This Is precisely the form of the response relation characteristic of

the so-called "Maxwell" spring-dashpot model of elementary

viscoelasticity. Other forms of macroscopic response can be obtained

by replacing (13) by a more general kinetic relation.

, A more extensive discussion of the one-dimensional theory of

quasi-static motions of bars composed of unstable elastic materials

*may be found in Abeyaratne and Knowles (1987c).
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